The effects of disrupting 5S RNA helical structures on the binding of Xenopus transcription factor IIIA.

نویسندگان

  • Q M You
  • P J Romaniuk
چکیده

Block mutations were constructed in helical stems II, III, IV and V of Xenopus laevis oocyte 5S RNA. The affinities of these mutants for binding to transcription factor IIIA (TFIIIA) were determined using a nitrocellulose filter binding assay. Mutations in stems III and IV had little or no effect on the binding affinity of TFIIIA for 5S RNA. However, single mutants in stems II and V (positions 16-21, 57-62, 71-72, and 103-104) which disrupt the double helix, reduce the binding of TFIIIA by a factor of two to three fold. In contrast, double mutants (16-21/57-62, 71-72/103-104) which restore the helical structure of these stems, but with altered sequences, fully restore the TFIIIA binding affinity. The experiments reported here indicate that the double helical structures of stems II and V, but not the sequences, are required for optimal TFIIIA binding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of the RNA binding properties of transcription factor IIIA of Xenopus laevis oocytes.

A nitrocellulose filter binding assay has been developed to study the interaction of Xenopus transcription factor IIIA with 5S RNA. The protein binds Xenopus oocyte 5S RNA with an association constant of 1.4 X 10(9) M-1 at 0.1 M salt, pH 7.5 at 20 degrees C. TF IIIA binds wheat germ 5S RNA with a two-fold higher affinity, E. coli 5S RNA with a four-fold weaker affinity, and has a barely detecta...

متن کامل

Binding of TFIIIA to derivatives of 5S RNA containing sequence substitutions or deletions defines a minimal TFIIIA binding site.

The repetitive zinc finger domain of transcription factor IIIA binds 5S DNA and 5S RNA with similar affinity. Site directed mutagenesis of the Xenopus borealis somatic 5S RNA gene has been used to produce a series of derivatives of 5S RNA containing local sequence substitutions or sequence deletions. Gel mobility shift analyses of the binding of TFIIIA to these altered 5S RNAs revealed that all...

متن کامل

A difference in the importance of bulged nucleotides and their parent base pairs in the binding of transcription factor IIIA to Xenopus 5S RNA and 5S RNA genes.

Individual bulge loops present in Xenopus 5S RNA (positions 49A-A50 in helix III, C63 in helix II and A83 in helix IV), were deleted by site directed mutagenesis. The interaction of these mutant 5S RNA molecules with TFIIIA was measured by a direct binding assay and a competition assay. The results of these experiments show that none of the bulged nucleotides in Xenopus 5S RNA are required for ...

متن کامل

Histones H2A/H2B inhibit the interaction of transcription factor IIIA with the Xenopus borealis somatic 5S RNA gene in a nucleosome.

A Xenopus borealis somatic 5S RNA gene was assembled with either the complete octamer of histones, (H2A/H2B/H3/H4)2, or the (H3/H4)2 tetramer of histones that comprises the central protein kernel of the nucleosome. Gel-mobility shifts, DNase I protection, and immunoblotting assays demonstrate that the class III transcription factor IIIA (TFIIIA) readily interacts with 5S DNA associated with the...

متن کامل

Identification of a transcription factor IIIA-interacting protein.

Transcription factor IIIA (TFIIIA) activates 5S ribosomal RNA gene transcription in eukaryotes. The protein from vertebrates has nine contiguous Cys(2)His(2)zinc fingers which function in nucleic acid binding, and a C-terminal region involved in transcription activation. In order to identify protein partners for TFIIIA, yeast two-hybrid screens were performed using the C-terminal region of Xeno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 18 17  شماره 

صفحات  -

تاریخ انتشار 1990